Feature Transformation - VectorSlicer (Transformer)
ft_vector_slicer
Description
Takes a feature vector and outputs a new feature vector with a subarray of the original features.
Usage
ft_vector_slicer(
x,input_col = NULL,
output_col = NULL,
indices = NULL,
uid = random_string("vector_slicer_"),
... )
Arguments
Arguments | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
input_col | The name of the input column. |
output_col | The name of the output column. |
indices | An vector of indices to select features from a vector column. Note that the indices are 0-based. |
uid | A character string used to uniquely identify the feature transformer. |
… | Optional arguments; currently unused. |
Value
The object returned depends on the class of x
. If it is a spark_connection
, the function returns a ml_estimator
or a ml_estimator
object. If it is a ml_pipeline
, it will return a pipeline with the transformer or estimator appended to it. If a tbl_spark
, it will return a tbl_spark
with the transformation applied to it.
See Also
Other feature transformers: ft_binarizer()
, ft_bucketizer()
, ft_chisq_selector()
, ft_count_vectorizer()
, ft_dct()
, ft_elementwise_product()
, ft_feature_hasher()
, ft_hashing_tf()
, ft_idf()
, ft_imputer()
, ft_index_to_string()
, ft_interaction()
, ft_lsh
, ft_max_abs_scaler()
, ft_min_max_scaler()
, ft_ngram()
, ft_normalizer()
, ft_one_hot_encoder()
, ft_one_hot_encoder_estimator()
, ft_pca()
, ft_polynomial_expansion()
, ft_quantile_discretizer()
, ft_r_formula()
, ft_regex_tokenizer()
, ft_robust_scaler()
, ft_sql_transformer()
, ft_standard_scaler()
, ft_stop_words_remover()
, ft_string_indexer()
, ft_tokenizer()
, ft_vector_assembler()
, ft_vector_indexer()
, ft_word2vec()