Generate random samples from a Beta distribution
sdf_rbeta
Description
Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a Betal distribution.
Usage
sdf_rbeta(
  sc,
  n,
  shape1,
  shape2,
  num_partitions = NULL,
  seed = NULL,
  output_col = "x"
)Arguments
| Arguments | Description | 
|---|---|
| sc | A Spark connection. | 
| n | Sample Size (default: 1000). | 
| shape1 | Non-negative parameter (alpha) of the Beta distribution. | 
| shape2 | Non-negative parameter (beta) of the Beta distribution. | 
| num_partitions | Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster). | 
| seed | Random seed (default: a random long integer). | 
| output_col | Name of the output column containing sample values (default: “x”). | 
See Also
Other Spark statistical routines: sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(), sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(), sdf_runif(), sdf_rweibull()