Generate random samples from a Weibull distribution.

R/sdf_stat.R

sdf_rweibull

Description

Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a Weibull distribution.

Usage

sdf_rweibull( 
  sc, 
  n, 
  shape, 
  scale = 1, 
  num_partitions = NULL, 
  seed = NULL, 
  output_col = "x" 
) 

Arguments

Arguments Description
sc A Spark connection.
n Sample Size (default: 1000).
shape The shape of the Weibull distribution.
scale The scale of the Weibull distribution (default: 1).
num_partitions Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster).
seed Random seed (default: a random long integer).
output_col Name of the output column containing sample values (default: “x”).

See Also

Other Spark statistical routines: sdf_rbeta(), sdf_rbinom(), sdf_rcauchy(), sdf_rchisq(), sdf_rexp(), sdf_rgamma(), sdf_rgeom(), sdf_rhyper(), sdf_rlnorm(), sdf_rnorm(), sdf_rpois(), sdf_rt(), sdf_runif()