Read binary data into a Spark DataFrame.
R/data_interface.R
spark_read_binary
Description
Read binary files within a directory and convert each file into a record within the resulting Spark dataframe. The output will be a Spark dataframe with the following columns and possibly partition columns:
-path: StringType
-modificationTime: TimestampType
-length: LongType
-content: BinaryType
Usage
spark_read_binary(
sc, name = NULL,
dir = name,
path_glob_filter = "*",
recursive_file_lookup = FALSE,
repartition = 0,
memory = TRUE,
overwrite = TRUE
)
Arguments
Arguments | Description |
---|---|
sc | A spark_connection . |
name | The name to assign to the newly generated table. |
dir | Directory to read binary files from. |
path_glob_filter | Glob pattern of binary files to be loaded (e.g., “*.jpg”). |
recursive_file_lookup | If FALSE (default), then partition discovery will be enabled (i.e., if a partition naming scheme is present, then partitions specified by subdirectory names such as “date=2019-07-01” will be created and files outside subdirectories following a partition naming scheme will be ignored). If TRUE, then all nested directories will be searched even if their names do not follow a partition naming scheme. |
repartition | The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning. |
memory | Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?) |
overwrite | Boolean; overwrite the table with the given name if it already exists? |
See Also
Other Spark serialization routines: collect_from_rds()
, spark_insert_table()
, spark_load_table()
, spark_read_avro()
, spark_read_csv()
, spark_read_delta()
, spark_read_image()
, spark_read_jdbc()
, spark_read_json()
, spark_read_libsvm()
, spark_read_orc()
, spark_read_parquet()
, spark_read_source()
, spark_read_table()
, spark_read_text()
, spark_read()
, spark_save_table()
, spark_write_avro()
, spark_write_csv()
, spark_write_delta()
, spark_write_jdbc()
, spark_write_json()
, spark_write_orc()
, spark_write_parquet()
, spark_write_source()
, spark_write_table()
, spark_write_text()