Read a Text file into a Spark DataFrame
spark_read_text
Description
Read a Text file into a Spark DataFrame
Usage
spark_read_text(
sc,name = NULL,
path = name,
repartition = 0,
memory = TRUE,
overwrite = TRUE,
options = list(),
whole = FALSE,
... )
Arguments
Arguments | Description |
---|---|
sc | A spark_connection . |
name | The name to assign to the newly generated table. |
path | The path to the file. Needs to be accessible from the cluster. Supports the "hdfs://" , "s3a://" and "file://" protocols. |
repartition | The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning. |
memory | Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?) |
overwrite | Boolean; overwrite the table with the given name if it already exists? |
options | A list of strings with additional options. |
whole | Read the entire text file as a single entry? Defaults to FALSE . |
… | Optional arguments; currently unused. |
Details
You can read data from HDFS (hdfs://
), S3 (s3a://
), as well as the local file system (file://
).
See Also
Other Spark serialization routines: collect_from_rds()
, spark_insert_table()
, spark_load_table()
, spark_read()
, spark_read_avro()
, spark_read_binary()
, spark_read_csv()
, spark_read_delta()
, spark_read_image()
, spark_read_jdbc()
, spark_read_json()
, spark_read_libsvm()
, spark_read_orc()
, spark_read_parquet()
, spark_read_source()
, spark_read_table()
, spark_save_table()
, spark_write_avro()
, spark_write_csv()
, spark_write_delta()
, spark_write_jdbc()
, spark_write_json()
, spark_write_orc()
, spark_write_parquet()
, spark_write_source()
, spark_write_table()
, spark_write_text()