library(sparklyr)
library(dplyr)
<- spark_connect(master = "local")
sc <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl
%>%
iris_tbl ft_binarizer(
input_col = "Sepal_Length",
output_col = "Sepal_Length_bin",
threshold = 5
%>%
) select(Sepal_Length, Sepal_Length_bin, Species)
#> # Source: spark<?> [?? x 3]
#> Sepal_Length Sepal_Length_bin Species
#> <dbl> <dbl> <chr>
#> 1 5.1 1 setosa
#> 2 4.9 0 setosa
#> 3 4.7 0 setosa
#> 4 4.6 0 setosa
#> 5 5 0 setosa
#> 6 5.4 1 setosa
#> 7 4.6 0 setosa
#> 8 5 0 setosa
#> 9 4.4 0 setosa
#> 10 4.9 0 setosa
#> # … with more rows
Feature Transformation – Binarizer (Transformer)
R/ml_feature_binarizer.R
ft_binarizer
Description
Apply thresholding to a column, such that values less than or equal to the threshold
are assigned the value 0.0, and values greater than the threshold are assigned the value 1.0. Column output is numeric for compatibility with other modeling functions.
Usage
ft_binarizer(
x,
input_col,
output_col, threshold = 0,
uid = random_string("binarizer_"),
... )
Arguments
Arguments | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
input_col | The name of the input column. |
output_col | The name of the output column. |
threshold | Threshold used to binarize continuous features. |
uid | A character string used to uniquely identify the feature transformer. |
… | Optional arguments; currently unused. |
Value
The object returned depends on the class of x
.
spark_connection
: Whenx
is aspark_connection
, the function returns aml_transformer
, aml_estimator
, or one of their subclasses. The object contains a pointer to a SparkTransformer
orEstimator
object and can be used to composePipeline
objects.ml_pipeline
: Whenx
is aml_pipeline
, the function returns aml_pipeline
with the transformer or estimator appended to the pipeline.tbl_spark
: Whenx
is atbl_spark
, a transformer is constructed then immediately applied to the inputtbl_spark
, returning atbl_spark
Examples
See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark. Other feature transformers: ft_bucketizer()
, ft_chisq_selector()
, ft_count_vectorizer()
, ft_dct()
, ft_elementwise_product()
, ft_feature_hasher()
, ft_hashing_tf()
, ft_idf()
, ft_imputer()
, ft_index_to_string()
, ft_interaction()
, ft_lsh
, ft_max_abs_scaler()
, ft_min_max_scaler()
, ft_ngram()
, ft_normalizer()
, ft_one_hot_encoder_estimator()
, ft_one_hot_encoder()
, ft_pca()
, ft_polynomial_expansion()
, ft_quantile_discretizer()
, ft_r_formula()
, ft_regex_tokenizer()
, ft_robust_scaler()
, ft_sql_transformer()
, ft_standard_scaler()
, ft_stop_words_remover()
, ft_string_indexer()
, ft_tokenizer()
, ft_vector_assembler()
, ft_vector_indexer()
, ft_vector_slicer()
, ft_word2vec()