Feature Transformation – NGram (Transformer)

R/ml_feature_ngram.R

ft_ngram

Description

A feature transformer that converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words.

Usage

ft_ngram( 
  x, 
  input_col = NULL, 
  output_col = NULL, 
  n = 2, 
  uid = random_string("ngram_"), 
  ... 
) 

Arguments

Arguments Description
x A spark_connection, ml_pipeline, or a tbl_spark.
input_col The name of the input column.
output_col The name of the output column.
n Minimum n-gram length, greater than or equal to 1. Default: 2, bigram features
uid A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.

Details

When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned.

Value

The object returned depends on the class of x.

  • spark_connection: When x is a spark_connection, the function returns a ml_transformer, a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer or Estimator object and can be used to compose Pipeline objects.

  • ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the transformer or estimator appended to the pipeline.

  • tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied to the input tbl_spark, returning a tbl_spark

See Also

See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()