library(sparklyr)
<- spark_connect(master = "local")
sc <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl
<- c("Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width")
features
%>%
iris_tbl ft_vector_assembler(
input_col = features,
output_col = "features_temp"
%>%
) ft_standard_scaler(
input_col = "features_temp",
output_col = "features",
with_mean = TRUE
) #> # Source: spark<?> [?? x 7]
#> Sepal_L…¹ Sepal…² Petal…³ Petal…⁴ Species featu…⁵ featu…⁶
#> <dbl> <dbl> <dbl> <dbl> <chr> <list> <list>
#> 1 5.1 3.5 1.4 0.2 setosa <dbl> <dbl>
#> 2 4.9 3 1.4 0.2 setosa <dbl> <dbl>
#> 3 4.7 3.2 1.3 0.2 setosa <dbl> <dbl>
#> 4 4.6 3.1 1.5 0.2 setosa <dbl> <dbl>
#> 5 5 3.6 1.4 0.2 setosa <dbl> <dbl>
#> 6 5.4 3.9 1.7 0.4 setosa <dbl> <dbl>
#> 7 4.6 3.4 1.4 0.3 setosa <dbl> <dbl>
#> 8 5 3.4 1.5 0.2 setosa <dbl> <dbl>
#> 9 4.4 2.9 1.4 0.2 setosa <dbl> <dbl>
#> 10 4.9 3.1 1.5 0.1 setosa <dbl> <dbl>
#> # … with more rows, and abbreviated variable names
#> # ¹Sepal_Length, ²Sepal_Width, ³Petal_Length,
#> # ⁴Petal_Width, ⁵features_temp, ⁶features
Feature Transformation – StandardScaler (Estimator)
R/ml_feature_standard_scaler.R
ft_standard_scaler
Description
Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set. The “unit std” is computed using the corrected sample standard deviation, which is computed as the square root of the unbiased sample variance.
Usage
ft_standard_scaler(
x, input_col = NULL,
output_col = NULL,
with_mean = FALSE,
with_std = TRUE,
uid = random_string("standard_scaler_"),
... )
Arguments
Arguments | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
input_col | The name of the input column. |
output_col | The name of the output column. |
with_mean | Whether to center the data with mean before scaling. It will build a dense output, so take care when applying to sparse input. Default: FALSE |
with_std | Whether to scale the data to unit standard deviation. Default: TRUE |
uid | A character string used to uniquely identify the feature transformer. |
… | Optional arguments; currently unused. |
Details
In the case where x
is a tbl_spark
, the estimator fits against x
to obtain a transformer, which is then immediately used to transform x
, returning a tbl_spark
.
Value
The object returned depends on the class of x
.
spark_connection
: Whenx
is aspark_connection
, the function returns aml_transformer
, aml_estimator
, or one of their subclasses. The object contains a pointer to a SparkTransformer
orEstimator
object and can be used to composePipeline
objects.ml_pipeline
: Whenx
is aml_pipeline
, the function returns aml_pipeline
with the transformer or estimator appended to the pipeline.tbl_spark
: Whenx
is atbl_spark
, a transformer is constructed then immediately applied to the inputtbl_spark
, returning atbl_spark
Examples
See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark. Other feature transformers: ft_binarizer()
, ft_bucketizer()
, ft_chisq_selector()
, ft_count_vectorizer()
, ft_dct()
, ft_elementwise_product()
, ft_feature_hasher()
, ft_hashing_tf()
, ft_idf()
, ft_imputer()
, ft_index_to_string()
, ft_interaction()
, ft_lsh
, ft_max_abs_scaler()
, ft_min_max_scaler()
, ft_ngram()
, ft_normalizer()
, ft_one_hot_encoder_estimator()
, ft_one_hot_encoder()
, ft_pca()
, ft_polynomial_expansion()
, ft_quantile_discretizer()
, ft_r_formula()
, ft_regex_tokenizer()
, ft_robust_scaler()
, ft_sql_transformer()
, ft_stop_words_remover()
, ft_string_indexer()
, ft_tokenizer()
, ft_vector_assembler()
, ft_vector_indexer()
, ft_vector_slicer()
, ft_word2vec()