Feature Transformation - Word2Vec (Estimator)
ft_word2vec
Description
Word2Vec transforms a word into a code for further natural language processing or machine learning process.
Usage
ft_word2vec(
  x,
  input_col = NULL,
  output_col = NULL,
  vector_size = 100,
  min_count = 5,
  max_sentence_length = 1000,
  num_partitions = 1,
  step_size = 0.025,
  max_iter = 1,
  seed = NULL,
  uid = random_string("word2vec_"),
  ...
)
ml_find_synonyms(model, word, num)Arguments
| Arguments | Description | 
|---|---|
| x | A spark_connection,ml_pipeline, or atbl_spark. | 
| input_col | The name of the input column. | 
| output_col | The name of the output column. | 
| vector_size | The dimension of the code that you want to transform from words. Default: 100 | 
| min_count | The minimum number of times a token must appear to be included in the word2vec model’s vocabulary. Default: 5 | 
| max_sentence_length | (Spark 2.0.0+) Sets the maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks of up to max_sentence_lengthsize. Default: 1000 | 
| num_partitions | Number of partitions for sentences of words. Default: 1 | 
| step_size | Param for Step size to be used for each iteration of optimization (> 0). | 
| max_iter | The maximum number of iterations to use. | 
| seed | A random seed. Set this value if you need your results to be reproducible across repeated calls. | 
| uid | A character string used to uniquely identify the feature transformer. | 
| … | Optional arguments; currently unused. | 
| model | A fitted Word2Vecmodel, returned byft_word2vec(). | 
| word | A word, as a length-one character vector. | 
| num | Number of words closest in similarity to the given word to find. | 
Details
In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, returning a tbl_spark.
Value
The object returned depends on the class of x. If it is a spark_connection, the function returns a ml_estimator or a ml_estimator object. If it is a ml_pipeline, it will return a pipeline with the transformer or estimator appended to it. If a tbl_spark, it will return a tbl_spark with the transformation applied to it.
ml_find_synonyms() returns a DataFrame of synonyms and cosine similarities
See Also
Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder(), ft_one_hot_encoder_estimator(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_robust_scaler(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer()