library(sparklyr)
<- spark_connect(master = "local", version = "3.0.0")
sc
# create a Spark dataframe with 2 columns of type MAP<STRING, INT>
<- sdf_copy_to(
two_maps_tbl
sc, ::tibble(
tibblem1 = c("{\"1\":2,\"3\":4,\"5\":6}", "{\"2\":1,\"4\":3,\"6\":5}"),
m2 = c("{\"1\":1,\"3\":3,\"5\":5}", "{\"2\":2,\"4\":4,\"6\":6}")
), overwrite = TRUE
%>%
) ::mutate(m1 = from_json(m1, "MAP<STRING, INT>"),
dplyrm2 = from_json(m2, "MAP<STRING, INT>"))
# create a 3rd column containing MAP<STRING, INT> values derived from the
# first 2 columns
<- two_maps_tbl %>%
transformed_two_maps_tbl hof_map_zip_with(
func = .(k, v1, v2) %->% (CONCAT(k, "_", v1, "_", v2)),
dest_col = m3
)
Merges two maps into one
R/dplyr_hof.R
hof_map_zip_with
Description
Merges two maps into a single map by applying the function specified to pairs of values with the same key (this is essentially a dplyr wrapper to the map_zip_with(map1, map2, func)
higher- order function, which is supported since Spark 3.0)
Usage
hof_map_zip_with(x, func, dest_col = NULL, map1 = NULL, map2 = NULL, ...)
Arguments
Arguments | Description |
---|---|
x | The Spark data frame to be processed |
func | The function to apply (it should take (key, value1, value2) as arguments, where (key, value1) is a key-value pair present in map1, (key, value2) is a key-value pair present in map2, and return a transformed value associated with key in the resulting map |
dest_col | Column to store the query result (default: the last column of the Spark data frame) |
map1 | The first map being merged, could be any SQL expression evaluating to a map (default: the first column of the Spark data frame) |
map2 | The second map being merged, could be any SQL expression evaluating to a map (default: the second column of the Spark data frame) |
… | Additional params to dplyr::mutate |