Tidying methods for Spark ML linear models
R/tidiers_ml_linear_models.R
ml_glm_tidiers
Description
These methods summarize the results of Spark ML models into tidy forms.
Usage
## S3 method for class 'ml_model_generalized_linear_regression'
tidy(x, exponentiate = FALSE, ...)
## S3 method for class 'ml_model_linear_regression'
tidy(x, ...)
## S3 method for class 'ml_model_generalized_linear_regression'
augment(
x, newdata = NULL,
type.residuals = c("working", "deviance", "pearson", "response"),
...
)
## S3 method for class '`_ml_model_linear_regression`'
augment(
x, new_data = NULL,
type.residuals = c("working", "deviance", "pearson", "response"),
...
)
## S3 method for class 'ml_model_linear_regression'
augment(
x, newdata = NULL,
type.residuals = c("working", "deviance", "pearson", "response"),
...
)
## S3 method for class 'ml_model_generalized_linear_regression'
glance(x, ...)
## S3 method for class 'ml_model_linear_regression'
glance(x, ...)
Arguments
Arguments | Description |
---|---|
x | a Spark ML model. |
exponentiate | For GLM, whether to exponentiate the coefficient estimates (typical for logistic regression.) |
… | extra arguments (not used.) |
newdata | a tbl_spark of new data to use for prediction. |
type.residuals | type of residuals, defaults to "working" . Must be set to "working" when newdata is supplied. |
new_data | a tbl_spark of new data to use for prediction. |
Details
The residuals attached by augment
are of type “working” by default, which is different from the default of “deviance” for residuals()
or sdf_residuals()
.