Spark ML - Isotonic Regression
ml_isotonic_regression
Description
Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
Usage
ml_isotonic_regression(
x,formula = NULL,
feature_index = 0,
isotonic = TRUE,
weight_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("isotonic_regression_"),
... )
Arguments
Arguments | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
formula | Used when x is a tbl_spark . R formula as a character string or a formula. This is used to transform the input dataframe before fitting, see ft_r_formula for details. |
feature_index | Index of the feature if features_col is a vector column (default: 0), no effect otherwise. |
isotonic | Whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true |
weight_col | The name of the column to use as weights for the model fit. |
features_col | Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula . |
label_col | Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula . |
prediction_col | Prediction column name. |
uid | A character string used to uniquely identify the ML estimator. |
… | Optional arguments; see Details. |
Value
The object returned depends on the class of x
. If it is a spark_connection
, the function returns a ml_estimator
object. If it is a ml_pipeline
, it will return a pipeline with the predictor appended to it. If a tbl_spark
, it will return a tbl_spark
with the predictions added to it.
See Also
Other ml algorithms: ml_aft_survival_regression()
, ml_decision_tree_classifier()
, ml_gbt_classifier()
, ml_generalized_linear_regression()
, ml_linear_regression()
, ml_linear_svc()
, ml_logistic_regression()
, ml_multilayer_perceptron_classifier()
, ml_naive_bayes()
, ml_one_vs_rest()
, ml_random_forest_classifier()
Examples
<- spark_connect(master = "local")
sc <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl
<- iris_tbl %>%
partitions sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
<- partitions$training
iris_training <- partitions$test
iris_test
<- iris_tbl %>%
iso_res ml_isotonic_regression(Petal_Length ~ Petal_Width)
<- ml_predict(iso_res, iris_test)
pred
pred