Feature Transformation – SQLTransformer
R/ml_feature_sql_transformer.R,
ft_sql_transformer
Description
Implements the transformations which are defined by SQL statement. Currently we only support SQL syntax like ‘SELECT … FROM THIS …’ where ‘THIS’ represents the underlying table of the input dataset. The select clause specifies the fields, constants, and expressions to display in the output, it can be any select clause that Spark SQL supports. Users can also use Spark SQL built-in function and UDFs to operate on these selected columns.
Usage
ft_sql_transformer(
x, statement = NULL,
uid = random_string("sql_transformer_"),
...
)
ft_dplyr_transformer(x, tbl, uid = random_string("dplyr_transformer_"), ...)
Arguments
Arguments | Description |
---|---|
x | A spark_connection , ml_pipeline , or a tbl_spark . |
statement | A SQL statement. |
uid | A character string used to uniquely identify the feature transformer. |
… | Optional arguments; currently unused. |
tbl | A tbl_spark generated using dplyr transformations. |
Details
ft_dplyr_transformer()
is mostly a wrapper around ft_sql_transformer()
that takes a tbl_spark
instead of a SQL statement. Internally, the ft_dplyr_transformer()
extracts the dplyr
transformations used to generate tbl
as a SQL statement or a sampling operation. Note that only single-table dplyr
verbs are supported and that the sdf_
family of functions are not.
Value
The object returned depends on the class of x
.
spark_connection
: Whenx
is aspark_connection
, the function returns aml_transformer
, aml_estimator
, or one of their subclasses. The object contains a pointer to a SparkTransformer
orEstimator
object and can be used to composePipeline
objects.ml_pipeline
: Whenx
is aml_pipeline
, the function returns aml_pipeline
with the transformer or estimator appended to the pipeline.tbl_spark
: Whenx
is atbl_spark
, a transformer is constructed then immediately applied to the inputtbl_spark
, returning atbl_spark
See Also
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer()
, ft_bucketizer()
, ft_chisq_selector()
, ft_count_vectorizer()
, ft_dct()
, ft_elementwise_product()
, ft_feature_hasher()
, ft_hashing_tf()
, ft_idf()
, ft_imputer()
, ft_index_to_string()
, ft_interaction()
, ft_lsh
, ft_max_abs_scaler()
, ft_min_max_scaler()
, ft_ngram()
, ft_normalizer()
, ft_one_hot_encoder_estimator()
, ft_one_hot_encoder()
, ft_pca()
, ft_polynomial_expansion()
, ft_quantile_discretizer()
, ft_r_formula()
, ft_regex_tokenizer()
, ft_robust_scaler()
, ft_standard_scaler()
, ft_stop_words_remover()
, ft_string_indexer()
, ft_tokenizer()
, ft_vector_assembler()
, ft_vector_indexer()
, ft_vector_slicer()
, ft_word2vec()